sábado, 21 de abril de 2012

Instalar Ubuntu

paso a paso

Otra vez llega esa epoca donde todos empiezan a hablar de lo mismo…la nueva version de Ubuntu! Esta vez es Ubuntu Lucid Lynx 10.04 y yo como siempre hice un tuto de como instalar paso a paso Ubuntu 10.04 con screenshots. Si quieren ver las novedades de esta nueva version click aqui. Ademas puedes leer cuales son las razones para usar Ubuntu y cuales para no usarlo.
Aclaraciones previas:
  • Ubuntu 10.04 sale el 29 de abril. Recomiendo bajarlo unos dias despues porque los servidores van a estar saturados. Y ademas si pueden es mejor hacerlo por bittorrent.
  • Ubuntu o cualquier linux en general se puede instalar junto con windows. Al iniciar la pc podran elegir cual usar.
  • Linux no es dificil de usar. No necesitas saber linux para usar Linux.
  • Si sigues los pasos de la instalacion correctamente no perderas ningun dato, no se borrara nada. Aun asi si tienes la oportunidad es recomendable un backup de tus datos importantes.
  • Es muy recomendable que hagan las particiones desde windows si es que van a usar dualboot (windows+linux), en especial si usan Vista o Seven. Windows como siempre no quiere que instalen otro sistema aparte del de ellos asi que pueda darle problemas si no particionan desde windows.
Algunos datos utiles sobre las particiones: En el articulo anterior que escribi sobre la instalacion de ubuntu el 90% de los comentarios eran porque no entendian como hacer el particionado. Por eso esta vez voy a tratar de cubrir esos aspectos y veremos 4 tipos de situaciones o resultados esperados tras la instalacion de ubuntu.
  • Usar todo el disco para Ubuntu
  • Usar todo el disco para Ubuntu con una particion de datos importantes
  • Tener windows y ubuntu a la vez (dualboot)
  • Tener (windows+una particion de datos importantes) junto con Ubuntu
Ademas de eso es importante conocer cuales son las partciones necesarias y recomendadas en Linux:
  • En principio solo necesitas 2 particiones: una raiz que se simboliza con la barra “/” y una particion de intercambio. La raiz es donde se instala todo el sistema GNU/Linux. Y la particion de intercambio es como una memoria virtual que usa Linux pero en tu disco.
  • Lo que yo recomiendo y recomienda la mayoria es hacer una particion raiz (/), una particion de intercambio y ademas una particion HOME que se simboliza “/home”. La particion HOME es parte del sistema GNU/Linux  donde se guardaran todas tus configuraciones de usuario. Es una ventaja porque cuando vayas a hacer una actualizacion del sistema no tendras que configurar todas tus preferencias (marcadores de firefox, themes, cuentas de email o msn,etc) de nuevo.
Veamos el proceso de instalacion. Hagan click en las imagenes para agrandarlas. Paso 0: Bajar el cd de Ubuntu, grabarlo en un cd regrabable y colocarlo en la lectora de cd. Recordar que en la BIOS se debe indicar que debe bootear desde el CD.
Paso 1: La primer pantalla es para elegir el idioma y si quieren probar el livecd o directamente instalar ubuntu 10.04. Elijen instalar.
Instalar Ubuntu 10.04 paso a paso
Seleccion de Idioma
Paso 2: Elijan su ubicacion, y de paso les muestra la hora que tiene esa ubicacion.

Instalar Ubuntu 10.04 paso a paso
Elegir Ubicacion y Hora
Paso 3: Elegir la distribucion de teclado. Recomiendo elegir “España” porque si elijen “Latinoamerica” no les tomara la ñ.
Instalar Ubuntu 10.04 paso a paso
Elegir Distribucion de teclado
Paso 4: Y aqui empieza la parte que los complica a todos. El particionado. No deberia complicarles tanto. Arriba les explique cuales son las particiones recomendadas en Linux. Veamoslo en mas detalle… Consideraciones:
  • Si tienen que modificar el tamaño de las particiones y estan en windows lo que mas le conviene es usar partition magic o la herramienta que conozcan. Tambien pueden rediminensionar, crear o borrar particiones usando un livecd de linux.
  • Los tamaños minimos recomendados para las particiones de Linux son: 4 GB para la raiz (/), 2 para la HOME (/home) y para el area de intercambio usar lo mismo que tienen de RAM.
  • Los tipos de particiones recomendados son: ext4 tanto para la raiz como para HOME, si su pc es muy viejita usen ext3.
  • Los tamaños de las particiones en las imagenes son solo de ejemplo. No deben elegir esos mismos valores.
  • Si tienen una particion con datos importantes que no quieren perder asegurense de desmarcar la opcion que dice ‘Formatear’
Situacion 1: Usar todo el disco para Ubuntu. Esta seria la situacion mas facil, te acabas de comprar una pc o tienes una pc que quieres limpiar y sacar mocosoft windows para comenzar de 0 con Linux entonces con esta opcion lo solucionas rapidamente. Simplemente elijes la opcion ‘Borrar y Usar el disco entero’
Instalar Ubuntu 10.04 paso a paso
Borrar y usar el disco entero
Situacion 2: Usar el disco entero pero particionandolo a mano. Esta opcion es por si quieren especificar un poco mas cual sera el tamaño de las particiones y si es que quieren por ejemplo poner la particion HOME por separado. Simplemente elijen la opcion ‘Especificar particiones manualmente’. No le hagan caso al cartel que dice ‘avanzado’ no es complicado. Les aparecera una ventana donde podran crear y borrar particiones. Para dejar la pc con el esquema por defecto de raiz, HOME e intercambio deben dejarla algo asi:
Instalar Ubuntu 10.04 paso a paso
Todo el disco con particionado a mano
Situacion 3: Usar todo el disco para ubuntu pero tener una particion aparte para datos importantes. Deben ir a ‘Especificar particiones manualmente’. Crear las particiones clasicas (raiz,HOME e intercambio) y luego hagan click sobre la particion que desean usar para datos importantes y click en ‘Cambiar’ alli les aparecera una ventana en la que deben elegir un punto de montaje para esa particion. Aunque no es del todo necesario si es recomendable porque asi es mas comodo acceder luego a esa particion. Yo por ejemplo le puse ‘importante’ y hay que poner antes la barra (/). Si esa particion ya estaba creada entonces deben utilizar el mismo sistema de ficheros que venian usando. Y si la acaban de crear entonces recomiendo que usen el sistema ext4.
Instalar Ubuntu 10.04 paso a paso
Definir punto de montaje
Luego de eso, la ‘foto’ de sus particiones debe quedarles mas o menos asi:
Instalar Ubuntu 10.04 paso a paso
Particionado con particion para datos
Situacion 4: Tengo windows pero lo quiero sacar e instalar Ubuntu. Pues basicamente solo deben hacer los mismos pasos que en la situacion 1 o la situacion 2.
Situacion 5: instalar ubuntu junto con Windows. En este caso primero redimensionan la particion de windows para hacer espacio para Ubuntu. Luego cuando lleguen a la parte de particionado elijen ‘Especificar particiones manualmente’. Alli se encontraran con algo como la imagen de abajo. Una particion sda1 del tipo FAT32 o NTFS que es la que contiene windows y un espacio libre a continuacion.
Instalar Ubuntu 10.04 paso a paso
Foto de un sistema con windows
Lo unico que hay que hacer es crear las particiones recomendadas para linux en ese espacio libre. De manera que quede algo asi(repito que no deben usar esos mismos tamaños, son solo de ejemplo):
Instalar Ubuntu 10.04 paso a paso
Windows con Linux
Situacion 6: Quiero tener windows + ubuntu + una particion con datos importantes. Este debe ser el mas clasico de los escenarios. Si leyeron las situaciones anteriores ya deben saber como debe quedar esto. Primero hacer espacio para Ubuntu, y luego crear las particiones recomendadas para Ubuntu. Mas o menos deberian tener algo asi (puede cambiar el orden):
Instalar Ubuntu 10.04 paso a paso
Foto de Windows+Datos+Ubuntu
Igual que en la situacion 3 podemos dar un punto de montaje a esa particion para que sea mas facil acceder a ella desde Linux. Por ejemplo pueden llamarla ‘/datos’ …
Creo haber explicado la mayoria de las situaciones que se pueden dar. Luego que hayan terminado con el tema del particionado hacen click en siguiente.
Paso 5: Colocar tu nombre. Tu nick de usuario, la pass para ese usuario (que tambien sera la pass del root) y un nombre para tu pc. Este paso no necesita explicacion verdad? Instalar Ubuntu 10.04 paso a paso
Instalar Ubuntu 10.04 paso a paso
Datos de usuario
Paso 6: Listo para instalar! Se muestra un resumen de las opciones que has elegido, las particiones que se formatearan, etc. Solo haz click en Instalar y espera a que termine Instalar Ubuntu 10.04 paso a paso
Instalar Ubuntu 10.04 paso a paso
Foto Final
Paso 7: Saca el CD, en la BIOS indica que vuelva a iniciar desde el disco duro. Y a disfrutar! Eso es todo el proceso para instalar ubuntu

Ubuntu

Pantallazo de Ubuntu 11 10.png
Ubuntu 11.10 (Oneiric Ocelot)
Ubuntu es un sistema operativo3 4 mantenido por Canonical y la comunidad de desarrolladores. Utiliza un núcleo Linux, y su origen está basado en Debian. Ubuntu está orientado al usuario novel y promedio, con un fuerte enfoque en la facilidad de uso y mejorar la experiencia de usuario. Está compuesto de múltiple software normalmente distribuido bajo una licencia libre o de código abierto. Estadísticas web sugieren que el porcentaje de mercado de Ubuntu dentro de "distribuciones linux" es de aproximadamente 49%,5 6 y con una tendencia a subir como servidor web.7 Y un importante incremento activo de 20 millones de usuarios para fines de 2011.8
Su patrocinador Canonical, es una compañía británica propiedad del empresario sudafricano Mark Shuttleworth ofrece el sistema de manera gratuita y que se financia por medio de servicios vinculados al sistema operativo9 10 y vendiendo soporte técnico.11 Además, al mantenerlo libre y gratuito, la empresa es capaz de aprovechar los desarrolladores de la comunidad para mejorar los componentes de su sistema operativo. Canonical también apoya y proporciona soporte para las derivaciones de Ubuntu: Kubuntu, Xubuntu, Edubuntu, Lubuntu y la versión de Ubuntu orientada a servidores (Ubuntu Server).12
Su eslogan es Linux for human beings (‘Linux para seres humanos’) y su nombre proviene de la ideología sudafricana Ubuntu («Igualdad/Lealtad hacia otros.»).
Cada seis meses se publica una nueva versión de Ubuntu la cual recibe soporte por parte de Canonical, durante dieciocho meses, por medio de actualizaciones de seguridad, parches para bugs críticos y actualizaciones menores de programas. Las versiones LTS (Long Term Support), que se liberan cada dos años,13 reciben soporte durante cinco años en los sistemas de escritorio y de servidor.14

Historia y proceso de desarrollo

Ubuntu es una bifurcación del código base del proyecto Debian.15 El objetivo inicial era hacer de Debian una distribución más fácil de usar y entender para los usuarios finales corrigiendo varios errores de éste y haciendo más sencillas algunas tareas como la gestión de programas. Su primer lanzamiento fue el 20 de octubre de 2004.16
Los lanzamientos de Ubuntu están sincronizados para realizarse un mes después que las del entorno de escritorio para poder incorporarlas, modificarlas y ofrecer la versión más reciente de la misma.17 Ubuntu usa primariamente software libre haciendo excepciones para varios controladores privativos además del firmware y software no libre incluido en el kernel Linux y el software no libre presente en sus repositorios.18
Los paquetes de Ubuntu están basados en la rama inestable de Debian: ambas distribuciones usan el formato de paquete de software deb y las herramientas de administración de paquetes APT, dpkg, más algunos front-ends. Los paquetes Debian y Ubuntu son en ciertos casos compatibles binariamente; algunas veces los paquetes deb pueden necesitar ser recompilados desde el código fuente para ser usados en Ubuntu.19 Muchos desarrolladores de Ubuntu también mantienen paquetes clave en Debian. Ubuntu coopera con Debian devolviendo cambios y mejoras en el código,20 aunque existen críticas sobre los escasos aportes. En el pasado, Ian Murdock, fundador de Debian, expresó su preocupación por el potencial cambio de los paquetes de Ubuntu con respecto a los de Debian ya que podrían llegar a ser completamente incompatibles.21
Antes de cada lanzamiento, se lleva a cabo una importación de paquetes, desde Debian, aplicando las modificaciones específicas de Ubuntu. Un mes antes del lanzamiento, comienza un proceso de congelación de importaciones, ayudando a que los desarrolladores puedan asegurar que el software sea suficientemente estable.
Desde el inicio del proyecto, Shuttleworth proporcionó el soporte económico gracias a los beneficios obtenidos después de vender su empresa Thawte a VeriSign, por unos 575 millones de dólares estadounidenses.22
El 8 de julio de 2005, Mark Shuttleworth y su empresa Canonical Ltd. anunciaron la creación de la Fundación Ubuntu y aportaron 10 millones de dólares como presupuesto inicial. El propósito de la fundación es el de asegurar soporte y desarrollo para todas las futuras versiones de Ubuntu.23
El 12 de marzo de 2009, Ubuntu anunció soporte para plataformas externas de administración de computación en nube, como Amazon EC2.24
A principios de 2009 los ingenieros y diseñadores de Canonical se dan cuenta de que la gestión de paquetes e instalación de aplicaciones es demasiado fragmentada y hasta compleja, por ende se planifica la creación de una aplicación central para el manejo e instalación de aplicaciones. En octubre de 2009 Canonical lanza oficialmente el Centro de software de Ubuntu (Ubuntu Software Center), permite buscar, instalar, desinstalar aplicaciones, y además permite agregar repositorios de terceros.25 En octubre de 2010 se introduce la venta de aplicaciones por medio de pagos en línea en el Centro de software de Ubuntu.26
El 3 de junio de 2010, Mark Shuttleworth anuncia el trabajo en conjunto con el proyecto Linaro y su desarrollo de código abierto para Linux en procesadores con tecnología ARM.27 A fines de septiembre se da a conocer antes del lanzamiento de Ubuntu 10.10, que esta versión incluiría un mejor y más estable soporte para procesadores ARM.28
En octubre y noviembre de 2010, se anuncian drásticos e importantes cambios en el escritorio de Ubuntu, la inclusión de la interfaz de usuario Unity (creada por Canonical), la cual será utilizada en la versión de escritorio de Ubuntu.29 También Mark Shuttleworth anuncia que en futuras versiones de Ubuntu, Unity se implementará en el servidor gráfico Wayland, y no en el servidor gráfico X (como se hacía habitualmente).30
Ubuntu para Android.
El 18 de enero de 2011, Mark Shuttleworth anuncia la inclusión de aplicaciones creadas en Qt para ser lanzadas a partir de "Natty+1" (después del lanzamiento de Ubuntu 11.04) y en futuras versiones de Ubuntu. Una de las metas de esta decisión es facilitar la integración al sistema de aplicaciones Qt, en comparación con las típicas aplicaciones desarrolladas en GTK que lucen nativas en la interfaz de usuario de Ubuntu. Para terminar con las dificultades técnicas de configuración y preferencias del sistema entre Qt y GTK, se crearán enlaces dconf para las aplicaciones Qt, con lo que se pretende centralizar la configuración del sistema, ya sea GTK o Qt, en un solo lugar.31
El 9 de marzo de 2011, Canonical anuncia la discontinuidad de 'Ubuntu Netbook Edition', debido a la integración de la interfaz Unity en su versión de escritorio a partir de Ubuntu 11.04, y así eliminar la redundancia de sus versiones con un mismo escritorio. Canonical también anuncia que los nombres 'Ubuntu Desktop Edition' y 'Ubuntu Server Edition' se eliminan, dejando solamente el nombre 'Ubuntu' para uso en todo tipo de computadoras, y 'Ubuntu Server' para su uso en servidores.32
El 31 de octubre de 2011, durante la presentación del Ubuntu Developer Summit, Mark Shuttleworth anuncia la integración de Ubuntu en varios otros dispositivos, tales como Tablets, Smart TVs y Smartphones. Todo esta integración llegará en la versión 14.04, en abril de 2014.33
En enero de 2012, durante la feria tecnológica CES 2012, Canonical revela la interfaz de Ubuntu TV, el cual ofrece una manera simple e intuitiva de organizar contenidos y servicios para TV.34
En febrero de 2012, Canonical anuncia 'Ubuntu for Android', el cual permite ejecutar el escritorio de Ubuntu directo desde un smartphone Android al conectarse en un monitor. Cosas como la sincronización de contactos, sincronización de redes sociales, y vista de aplicaciones Android son posibles. Ubuntu para Android tiene compatibilidad con smartphones con múltiples núcleos ARM, y la ventaja de compartir el mismo kernel con Android.35

nterfaz de usuario

Dash que despliega los iconos de las aplicaciones en Ubuntu 11.10.
Ubuntu desde su primer lanzamiento utilizó la interfaz de usuario predeterminada del escritorio GNOME, con un panel inferior para listar ventanas y un panel superior para menús e indicadores de sistema, pero desde la versión 11.04 Natty Narwhal la interfaz de usuario predeterminada es Unity, además de las actuales herramientas de GNOME. Durante el proceso de desarrollo de GNOME 3, la nueva interfaz de usuario, GNOME Shell, no compartía las ideas de diseño, interacción, y experiencia de usuario de los desarrolladores de Ubuntu. Dado el caso, el equipo de desarrollo de Ubuntu pensó en desarrollar su propia interfaz de usuario; Unity fue diseñado como shell para el escritorio de GNOME para incrementar la eficiencia de espacio e interacción con el escritorio.36
La actual interfaz de usuario de Ubuntu está compuesta por tres importantes elementos: un panel superior para indicadores de sistema y menús, un lanzador de aplicaciones al costado izquierdo, y un tablero que despliega lugares y aplicaciones ofreciendo una interfaz más atractiva para el usuario. Ubuntu además de la interfaz Unity, utiliza las herramientas de GNOME que forman el resto del escritorio, el gestor de ventanas Compiz para las transiciones de efectos visuales, y varios elementos visuales diseñados por Canonical; tales como barras de desplazamiento Overlay Scrollbars, varios indicadores de sistema como el menú de sonido, el menú de mensajería, y el menú de estado de usuario, iconos Ubuntu Mono e Humanity, temas light-themes, las burbujas de notificación OSD, y los menús de aplicaciones globales.37

Características

Mark Shuttleworth, en la presentación de apertura del Ubuntu Developer Summit 2011, en Budapest.
En su última versión, Ubuntu soporta oficialmente dos arquitecturas de hardware en computadoras personales y servidores: x86 y AMD6438 (x86-64); siendo la versión 6.10 la última que oficialmente soportó la arquitectura PowerPC,39 después de lo cual es solo soportada por la comunidad.40 Sin embargo, extraoficialmente, Ubuntu ha sido portado a tres arquitecturas más: SPARC, IA-64 y Playstation 3.
A partir de la versión 9.04 —lanzada en abril de 2009— se empezó a ofrecer soporte oficial para procesadores ARM,41 comúnmente usados en dispositivos móviles, PDA etc.
Al igual que la mayoría de las distribuciones basadas en GNU/Linux, Ubuntu es capaz de actualizar a la vez todas las aplicaciones instaladas en la máquina a través de repositorios.
Ubuntu está siendo traducido a más de 130 idiomas,2 y cada usuario es capaz de colaborar voluntariamente a esta causa, a través de Inte
rnet.

Ubuntu y la comunidad

Los usuarios pueden participar en el desarrollo de Ubuntu, escribiendo código, solucionando bugs, probando versiones inestables del sistema, etc;42 además, en febrero de 2008 se puso en marcha la página «Brainstorm»43 que permite a los usuarios proponer sus ideas y votar las del resto. También se informa de las ideas propuestas que se están desarrollando o están previstas

El software incluido

Centro de software de Ubuntu 5.0, incluido en Ubuntu 11.10.
Nuevo Configuración del sistema en Ubuntu 11.10.
Posee una gran colección de aplicaciones para la configuración de todo el sistema, valiéndose principalmente de interfaces gráficas. El entorno de escritorio predeterminado de Ubuntu es GNOME y se sincroniza con sus liberaciones. Existen otras tres versiones oficiales de la distribución, una con el entorno KDE, llamada Kubuntu, otra con el entorno Xfce, llamada Xubuntu, y por ultimo otra con el entorno LXDE llamada Lubuntu; este ultimo, recientemente añadido a las versiones oficiales. Existen otros escritorios disponibles, que pueden ser instalados en cualquier sistema Ubuntu independientemente del entorno de escritorio instalado por defecto.
  • Seguridad y accesibilidad: El sistema incluye funciones avanzadas de seguridad y entre sus políticas se encuentra el no activar, de forma predeterminada, procesos latentes al momento de instalarse. Por eso mismo, no hay un cortafuegos predeterminado, ya que no existen servicios que puedan atentar a la seguridad del sistema. Para labores o tareas administrativas en la línea de comandos incluye una herramienta llamada sudo (de las siglas en inglés de SuperUser do), con la que se evita el uso del usuario administrador. Posee accesibilidad e internacionalización, de modo que el sistema esté disponible para tanta gente como sea posible. Desde la versión 5.04, se utiliza UTF-8 como codificación de caracteres predeterminado.
No sólo se relaciona con Debian por el uso del mismo formato de paquetes .deb. También tiene uniones muy fuertes con esa comunidad, cont
ribuyendo con cualquier cambio directa e inmediatamente, y no sólo anunciándolos. Esto sucede en los tiempos de lanzamiento. Muchos de los desarrolladores de Ubuntu son también responsables de los paquetes importantes dentro de la distribución DebianPara centrarse en solucionar rápidamente los bugs, conflictos de paquetes, etc. se decidió eliminar ciertos paquetes del componente main, ya que no son populares o simplemente se escogieron de forma arbitraria por gusto o sus bases de apoyo al software libre. Por tales motivos inicialmente KDE no se encontraba con más soporte de lo que entregaban los mantenedores de Debian en sus repositorios, razón por la que se sumó la comunidad de KDE creando la distribución GNU/Linux Kubuntu.[cita requerid

Organización de paquetes

Ubuntu divide todo el software en cuatro secciones, llamadas «componentes», para mostrar diferencias en licencias y la prioridad con la que se atienden los problemas que informen los usuarios.44 Estos componentes son: main, restricted, universe y multiverse.
Por defecto se instalan paquetes de los componentes main y restricted44 Los paquetes del componente universe de Ubuntu generalmente se basan en los paquetes de la rama inestable (Sid) y en el repositorio experimental de Debian.[cita requerida]
  • main: contiene solamente los paquetes que cumplen los requisitos de la licencia de Ubuntu, y para los que hay soporte disponible por parte de su equipo. Éste está pensado para que incluya todo lo necesario para la mayoría de los sistemas Linux de uso general. Los paquetes de este componente poseen ayuda técnica garantizada y mejoras de seguridad oportunas.44
  • restricted: contiene paquetes soportados por los desarrolladores de Ubuntu debido a su importancia, pero que no está disponible bajo ningún tipo de licencia libre para incluir en main. En este lugar se incluyen los paquetes tales como los controladores propietarios de algunas tarjetas gráficas, como por ejemplo, los de ATI y NVIDIA. El nivel de la ayuda es más limitado que para main, puesto que los desarrolladores pueden no tener acceso al código fuente.44
  • universe: contiene una amplia gama de programas, que pueden o no tener una licencia restringida, pero que no recibe apoyo por parte del equipo de Ubuntu sino por parte de la comunidad. Esto permite que los usuarios instalen toda clase de programas en el sistema guardándolos en un lugar aparte de los paquetes soportados: main y restricted.44
multiverse: contiene los paquetes sin soporte debido a que no cumplen los requisitos de software libre

Software libre



El software libre (en inglés free software, aunque esta denominación también se confunde a veces con "gratis" por la ambigüedad del término "free" en el idioma inglés, por lo que también se usa "libre software" y "logical libre") es la denominación del software que respeta la libertad de los usuarios sobre su producto adquirido y, por tanto, una vez obtenido puede ser usado, copiado, estudiado, modificado, y redistribuido libremente. Según la Free Software Foundation, el software libre se refiere a la libertad de los usuarios para ejecutar, copiar, distribuir, estudiar, modificar el software y distribuirlo modificado.
El software libre suele estar disponible gratuitamente, o al precio de costo de la distribución a través de otros medios; sin embargo no es obligatorio que sea así, por lo tanto no hay que asociar software libre a "software gratuito" (denominado usualmente freeware), ya que, conservando su carácter de libre, puede ser distribuido comercialmente ("software comercial"). Análogamente, el "software gratis" o "gratuito" incluye en ocasiones el código fuente; no obstante, este tipo de software no es libre en el mismo sentido que el software libre, a menos que se garanticen los derechos de modificación y redistribución de dichas versiones modificadas del programa.
Tampoco debe confundirse software libre con "software de dominio público". Éste último es aquel software que no requiere de licencia, pues sus derechos de explotación son para toda la humanidad, porque pertenece a todos por igual. Cualquiera puede hacer uso de él, siempre con fines legales y consignando su autoría original. Este software sería aquel cuyo autor lo dona a la humanidad o cuyos derechos de autor han expirado, tras un plazo contado desde la muerte de este, habitualmente 70 años. Si un autor condiciona su uso bajo una licencia, por muy débil que sea, ya no es del dominio público.

Historia

Entre los años 1960 y 1970, el software no era considerado un producto sino un añadido que los vendedores de las grandes computadoras de la época (las mainframes) aportaban a sus clientes para que éstos pudieran usarlos. En dicha cultura, era común que los programadores y desarrolladores de software compartieran libremente sus programas unos con otros. Este comportamiento era particularmente habitual en algunos de los mayores grupos de usuarios de la época, como DECUS (grupo de usuarios de computadoras DEC). A finales de la década de 1970, las compañías iniciaron el hábito de imponer restricciones a los usuarios, con el uso de acuerdos de licencia.
En 1971, cuando la informática todavía no había sufrido su gran boom, las personas que hacían uso de ella, en ámbitos universitarios y empresariales, creaban y compartían el software sin ningún tipo de restricciones.
Con la llegada de los años 1980 la situación empezó a cambiar. Las computadoras más modernas comenzaban a utilizar sistemas operativos privativos, forzando a los usuarios a aceptar condiciones restrictivas que impedían realizar modificaciones a dicho software.
En caso de que algún usuario o programador encontrase algún error en la aplicación, lo único que podía hacer era darlo a conocer a la empresa desarrolladora para que ésta lo solucionara. Aunque el programador estuviese capacitado para solucionar el problema y lo desease hacer sin pedir nada a cambio, el contrato le impedía que modificase el software.
El mismo Richard Matthew Stallman cuenta que por aquellos años, en el laboratorio donde trabajaba, habían recibido una impresora donada por una empresa externa. El dispositivo, que era utilizado en red por todos los trabajadores, parecía no funcionar a la perfección, dado que cada cierto tiempo el papel se atascaba. Como agravante, no se generaba ningún aviso que se enviase por red e informase a los usuarios de la situación.
La pérdida de tiempo era constante, ya que en ocasiones, los trabajadores enviaban por red sus trabajos a imprimir y al ir a buscarlos se encontraban la impresora atascada y una cola enorme de trabajos pendientes. Richard Stallman decidió arreglar el problema, e implementar el envío de un aviso por red cuando la impresora se bloqueara. Para ello necesitaba tener acceso al código fuente de los controladores de la impresora. Pidió a la empresa propietaria de la impresora lo que necesitaba, comentando, sin pedir nada a cambio, qué era lo que pretendía realizar. La empresa se negó a entregarle el código fuente. En ese preciso instante, Stallman se vio en una encrucijada: debía elegir entre aceptar el nuevo software propietario firmando acuerdos de no revelación y acabar desarrollando más software propietario con licencias restrictivas, que a su vez deberían ser más adelante aceptadas por sus propios colegas.
Con este antecedente, en 1984, Richard Stallman comenzó a trabajar en el proyecto GNU, y un año más tarde fundó la Free Software Foundation (FSF). Stallman introdujo la definición de software libre y el concepto de "copyleft", que desarrolló para otorgar libertad a los usuarios y para restringir las posibilidades de apropiación del software

Libertades del software libre

De acuerdo con tal definición, un software es "libre" cuando garantiza las siguientes libertades:2
Libertad Descripción
0 la libertad de usar el programa, con cualquier propósito.
1 la libertad de estudiar cómo funciona el programa y modificarlo, adaptándolo a tus necesidades.
2 la libertad de distribuir copias del programa, con lo cual puedes ayudar a tu prójimo.
3 la libertad de mejorar el programa y hacer públicas esas mejoras a los demás, de modo que toda la comunidad se beneficie.
Las libertades 1 y 3 requieren acceso al código fuente porque estudiar y modificar software sin su código fuente es muy poco viable.
Ciertos teóricos usan este cuarto punto (libertad 3) para justificar parcialmente las limitaciones impuestas por la licencia GNU GPL frente a otras licencias de software libre (ver Licencias GPL). Sin embargo el sentido original es más libre, abierto y menos restrictivo que el que le otorga la propia situación de incompatibilidad, que podría ser resuelta en la próxima versión 3.0 de la licencia GNU GPL, causa en estos momentos graves perjuicios a la comunidad de programadores de software libre, que muchas veces no pueden reutilizar o mezclar códigos de dos licencias distintas, pese a que las libertades teóricamente lo deberían permitir.
Tanto la Open Source Initiative3 como la Free Software Foundation4 mantienen en sus webs oficiales listados de las licencias de software libre que aprueban.
El término software no libre se emplea para referirse al software distribuido bajo una licencia de software más restrictiva que no garantiza estas cuatro libertades. Las leyes de la propiedad intelectual reservan la mayoría de los derechos de modificación, duplicación y redistribución para el dueño del copyright; el software dispuesto bajo una licencia de software libre rescinde específicamente la mayoría de estos derechos reservados.
La definición de software libre no contempla el asunto del precio; un eslogan frecuentemente usado es "libre como en libertad, no como en cerveza gratis" o en inglés "Free as in freedom, not as in free beer" (aludiendo a la ambigüedad del término inglés "free"), y es habitual ver a la venta CD de software libre como distribuciones Linux. Sin embargo, en esta situación, el comprador del CD tiene el derecho de copiarlo y redistribuirlo. El software gratis puede incluir restricciones que no se adaptan a la definición de software libre —por ejemplo, puede no incluir el código fuente, puede prohibir explícitamente a los distribuidores recibir una compensación a cambio, etc—.
Para evitar la confusión, algunas personas utilizan los términos "libre" (software libre) y "gratis" (software gratis) para evitar la ambigüedad de la palabra inglesa "free". Sin embargo, estos términos alternativos son usados únicamente dentro del movimiento del software libre, aunque están extendiéndose lentamente hacia el resto del mundo. Otros defienden el uso del término open source software (software de código abierto). La principal diferencia entre los términos "open source" y "free software" es que éste último tiene en cuenta los aspectos éticos y filosóficos de la libertad, mientras que el "open source" se basa únicamente en los aspectos técnicos.
En un intento por unir los mencionados términos que se refieren a conceptos semejantes, se está extendiendo el uso de la palabra "FLOSS" con el significado de free/libre and open source software e, indirectamente, también a la comunidad que lo produce y apoya.

 


martes, 17 de abril de 2012

SOFTWARE

Software


Software
OpenOffice.org Writer.png
KWord-1.4.2-screenshot.png
Los procesadores de texto están incluidos en la categoría de software de aplicación. Las imágenes son capturas de pantalla de OpenOffice (arriba) y KWord (abajo).
Se conoce como software1 al equipamiento lógico o soporte lógico de un sistema informático, comprende el conjunto de los componentes lógicos necesarios que hacen posible la realización de tareas específicas, en contraposición a los componentes físicos, que son llamados hardware.
Los componentes lógicos incluyen, entre muchos otros, las aplicaciones informáticas; tales como el procesador de texto, que permite al usuario realizar todas las tareas concernientes a la edición de textos; el software de sistema, tal como el sistema operativo, que, básicamente, permite al resto de los programas funcionar adecuadamente, facilitando también la interacción entre los componentes físicos y el resto de las aplicaciones, y proporcionando una interfaz con el usuario.

Etimología

Software (pronunciación AFI:[soft'ɣware]) es una palabra proveniente del inglés (literalmente: partes blandas o suaves), que en español no posee una traducción adecuada al contexto, por lo cual se la utiliza asiduamente sin traducir y así fue admitida por la Real Academia Española (RAE).2 Aunque no es estrictamente lo mismo, suele sustituirse por expresiones tales como programas (informáticos) o aplicaciones (informáticas).3
Software es lo que se denomina producto en Ingeniería de Software.4

Definición de software

Existen varias definiciones similares aceptadas para software, pero probablemente la más formal sea la siguiente:
Es el conjunto de los programas de cómputo, procedimientos, reglas, documentación y datos asociados que forman parte de las operaciones de un sistema de computación.
Extraído del estándar 729 del IEEE5
Considerando esta definición, el concepto de software va más allá de los programas de computación en sus distintos estados: código fuente, binario o ejecutable; también su documentación, los datos a procesar e incluso la información de usuario forman parte del software: es decir, abarca todo lo intangible, todo lo «no físico» relacionado.
El término «software» fue usado por primera vez en este sentido por John W. Tukey en 1957. En la ingeniería de software y las ciencias de la computación, el software es toda la información procesada por los sistemas informáticos: programas y datos.
El concepto de leer diferentes secuencias de instrucciones (programa) desde la memoria de un dispositivo para controlar los cálculos fue introducido por Charles Babbage como parte de su máquina diferencial. La teoría que forma la base de la mayor parte del software moderno fue propuesta por Alan Turing en su ensayo de 1936, «Los números computables», con una aplicación al problema de decisión.

Clasificación del software

Si bien esta distinción es, en cierto modo, arbitraria, y a veces confusa, a los fines prácticos se puede clasificar al software en tres grandes tipos:

Proceso de creación del software

Se define como proceso al conjunto ordenado de pasos a seguir para llegar a la solución de un problema u obtención de un producto, en este caso particular, para lograr un producto software que resuelva un problema específico.
El proceso de creación de software puede llegar a ser muy complejo, dependiendo de su porte, características y criticidad del mismo. Por ejemplo la creación de un sistema operativo es una tarea que requiere proyecto, gestión, numerosos recursos y todo un equipo disciplinado de trabajo. En el otro extremo, si se trata de un sencillo programa (por ejemplo, la resolución de una ecuación de segundo orden), éste puede ser realizado por un solo programador (incluso aficionado) fácilmente. Es así que normalmente se dividen en tres categorías según su tamaño (líneas de código) o costo: de «pequeño», «mediano» y «gran porte». Existen varias metodologías para estimarlo, una de las más populares es el sistema COCOMO que provee métodos y un software (programa) que calcula y provee una aproximación de todos los costos de producción en un «proyecto software» (relación horas/hombre, costo monetario, cantidad de líneas fuente de acuerdo a lenguaje usado, etc.).
Considerando los de gran porte, es necesario realizar complejas tareas, tanto técnicas como de gerencia, una fuerte gestión y análisis diversos (entre otras cosas), la complejidad de ello ha llevado a que desarrolle una ingeniería específica para tratar su estudio y realización: es conocida como Ingeniería de Software.
En tanto que en los de mediano porte, pequeños equipos de trabajo (incluso un avezado analista-programador solitario) pueden realizar la tarea. Aunque, siempre en casos de mediano y gran porte (y a veces también en algunos de pequeño porte, según su complejidad), se deben seguir ciertas etapas que son necesarias para la construcción del software. Tales etapas, si bien deben existir, son flexibles en su forma de aplicación, de acuerdo a la metodología o proceso de desarrollo escogido y utilizado por el equipo de desarrollo o por el analista-programador solitario (si fuere el caso).
Los «procesos de desarrollo de software» poseen reglas preestablecidas, y deben ser aplicados en la creación del software de mediano y gran porte, ya que en caso contrario lo más seguro es que el proyecto o no logre concluir o termine sin cumplir los objetivos previstos, y con variedad de fallos inaceptables (fracasan, en pocas palabras). Entre tales «procesos» los hay ágiles o livianos (ejemplo XP), pesados y lentos (ejemplo RUP), y variantes intermedias. Normalmente se aplican de acuerdo al tipo y porte del software a desarrollar, a criterio del líder (si lo hay) del equipo de desarrollo. Algunos de esos procesos son Programación Extrema (en inglés eXtreme Programming o XP), Proceso Unificado de Rational (en inglés Rational Unified Process o RUP), Feature Driven Development (FDD), etc.
Cualquiera sea el «proceso» utilizado y aplicado al desarrollo del software (RUP, FDD, XP, etc), y casi independientemente de él, siempre se debe aplicar un «modelo de ciclo de vida».6
Se estima que, del total de proyectos software grandes emprendidos, un 28% fracasan, un 46% caen en severas modificaciones que lo retrasan y un 26% son totalmente exitosos. 7
Cuando un proyecto fracasa, rara vez es debido a fallas técnicas, la principal causa de fallos y fracasos es la falta de aplicación de una buena metodología o proceso de desarrollo. Entre otras, una fuerte tendencia, desde hace pocas décadas, es mejorar las metodologías o procesos de desarrollo, o crear nuevas y concientizar a los profesionales de la informática a su utilización adecuada. Normalmente los especialistas en el estudio y desarrollo de estas áreas (metodologías) y afines (tales como modelos y hasta la gestión misma de los proyectos) son los ingenieros en software, es su orientación. Los especialistas en cualquier otra área de desarrollo informático (analista, programador, Lic. en informática, ingeniero en informática, ingeniero de sistemas, etc.) normalmente aplican sus conocimientos especializados pero utilizando modelos, paradigmas y procesos ya elaborados.
Es común para el desarrollo de software de mediano porte que los equipos humanos involucrados apliquen «metodologías propias», normalmente un híbrido de los procesos anteriores y a veces con criterios propios.
El proceso de desarrollo puede involucrar numerosas y variadas tareas6 , desde lo administrativo, pasando por lo técnico y hasta la gestión y el gerenciamiento. Pero, casi rigurosamente, siempre se cumplen ciertas etapas mínimas; las que se pueden resumir como sigue:
En las anteriores etapas pueden variar ligeramente sus nombres, o ser más globales, o contrariamente, ser más refinadas; por ejemplo indicar como una única fase (a los fines documentales e interpretativos) de «análisis y diseño»; o indicar como «implementación» lo que está dicho como «codificación»; pero en rigor, todas existen e incluyen, básicamente, las mismas tareas específicas.
En el apartado 4 del presente artículo se brindan mayores detalles de cada una de las etapas indicadas.

Modelos de proceso o ciclo de vida

Para cada una de las fases o etapas listadas en el ítem anterior, existen sub-etapas (o tareas). El modelo de proceso o modelo de ciclo de vida utilizado para el desarrollo, define el orden de las tareas o actividades involucradas,6 también define la coordinación entre ellas, y su enlace y realimentación. Entre los más conocidos se puede mencionar: modelo en cascada o secuencial, modelo espiral, modelo iterativo incremental. De los antedichos hay a su vez algunas variantes o alternativas, más o menos atractivas según sea la aplicación requerida y sus requisitos.7

Modelo cascada

Este, aunque es más comúnmente conocido como modelo en cascada es también llamado «modelo clásico», «modelo tradicional» o «modelo lineal secuencial».
El modelo en cascada puro difícilmente se utiliza tal cual, pues esto implicaría un previo y absoluto conocimiento de los requisitos, la no volatilidad de los mismos (o rigidez) y etapas subsiguientes libres de errores; ello sólo podría ser aplicable a escasos y pequeños sistemas a desarrollar. En estas circunstancias, el paso de una etapa a otra de las mencionadas sería sin retorno, por ejemplo pasar del diseño a la codificación implicaría un diseño exacto y sin errores ni probable modificación o evolución: «codifique lo diseñado sin errores, no habrá en absoluto variantes futuras». Esto es utópico; ya que intrínsecamente el software es de carácter evolutivo9 , cambiante y difícilmente libre de errores, tanto durante su desarrollo como durante su vida operativa.6
Fig. 2 - Modelo cascada puro o secuencial para el ciclo de vida del software.
Algún cambio durante la ejecución de una cualquiera de las etapas en este modelo secuencial implicaría reiniciar desde el principio todo el ciclo completo, lo cual redundaría en altos costos de tiempo y desarrollo. La figura 2 muestra un posible esquema de el modelo en cuestión.6
Sin embargo, el modelo cascada en algunas de sus variantes es uno de los actualmente más utilizados10 , por su eficacia y simplicidad, más que nada en software de pequeño y algunos de mediano porte; pero nunca (o muy rara vez) se lo usa en su "forma pura", como se dijo anteriormente. En lugar de ello, siempre se produce alguna realimentación entre etapas, que no es completamente predecible ni rígida; esto da oportunidad al desarrollo de productos software en los cuales hay ciertas incertezas, cambios o evoluciones durante el ciclo de vida. Así por ejemplo, una vez capturados y especificados los requisitos (primera etapa) se puede pasar al diseño del sistema, pero durante esta última fase lo más probable es que se deban realizar ajustes en los requisitos (aunque sean mínimos), ya sea por fallas detectadas, ambigüedades o bien por que los propios requisitos han cambiado o evolucionado; con lo cual se debe retornar a la primera o previa etapa, hacer los reajuste pertinentes y luego continuar nuevamente con el diseño; esto último se conoce como realimentación. Lo normal en el modelo cascada será entonces la aplicación del mismo con sus etapas realimentadas de alguna forma, permitiendo retroceder de una a la anterior (e incluso poder saltar a varias anteriores) si es requerido.
De esta manera se obtiene el «modelo cascada realimentado», que puede ser esquematizado como lo ilustra la figura 3.
Fig. 3 - Modelo cascada realimentado para el ciclo de vida.
Lo dicho es, a grandes rasgos, la forma y utilización de este modelo, uno de los más usados y populares.6 El modelo cascada realimentado resulta muy atractivo, hasta ideal, si el proyecto presenta alta rigidez (pocos cambios, previsto no evolutivo), los requisitos son muy claros y están correctamente especificados.10
Hay más variantes similares al modelo: refino de etapas (más etapas, menores y más específicas) o incluso mostrar menos etapas de las indicadas, aunque en tal caso la faltante estará dentro de alguna otra. El orden de esas fases indicadas en el ítem previo es el lógico y adecuado, pero adviértase, como se dijo, que normalmente habrá realimentación hacia atrás.
El modelo lineal o en cascada es el paradigma más antiguo y extensamente utilizado, sin embargo las críticas a él (ver desventajas) han puesto en duda su eficacia. Pese a todo, tiene un lugar muy importante en la Ingeniería de software y continúa siendo el más utilizado; y siempre es mejor que un enfoque al azar.10
Desventajas del modelo cascada:6
  • Los cambios introducidos durante el desarrollo pueden confundir al equipo profesional en las etapas tempranas del proyecto. Si los cambios se producen en etapa madura (codificación o prueba) pueden ser catastróficos para un proyecto grande.
  • No es frecuente que el cliente o usuario final explicite clara y completamente los requisitos (etapa de inicio); y el modelo lineal lo requiere. La incertidumbre natural en los comienzos es luego difícil de acomodar.10
  • El cliente debe tener paciencia ya que el software no estará disponible hasta muy avanzado el proyecto. Un error detectado por el cliente (en fase de operación) puede ser desastroso, implicando reinicio del proyecto, con altos costos.

[editar] Modelos evolutivos

El software evoluciona con el tiempo.11 9 Los requisitos del usuario y del producto suelen cambiar conforme se desarrolla el mismo. Las fechas de mercado y la competencia hacen que no sea posible esperar a poner en el mercado un producto absolutamente completo, por lo que se aconsejable introducir una versión funcional limitada de alguna forma para aliviar las presiones competitivas.
En esas u otras situaciones similares los desarrolladores necesitan modelos de progreso que estén diseñados para acomodarse a una evolución temporal o progresiva, donde los requisitos centrales son conocidos de antemano, aunque no estén bien definidos a nivel detalle.
En el modelo cascada y cascada realimentado no se tiene demasiado en cuenta la naturaleza evolutiva del software11 , se plantea como estático, con requisitos bien conocidos y definidos desde el inicio.6
Los evolutivos son modelos iterativos, permiten desarrollar versiones cada vez más completas y complejas, hasta llegar al objetivo final deseado; incluso evolucionar más allá, durante la fase de operación.
Los modelos «iterativo incremental» y «espiral» (entre otros) son dos de los más conocidos y utilizados del tipo evolutivo.10
Modelo iterativo incremental
En términos generales, se puede distinguir, en la figura 4, los pasos generales que sigue el proceso de desarrollo de un producto software. En el modelo de ciclo de vida seleccionado, se identifican claramente dichos pasos. La descripción del sistema es esencial para especificar y confeccionar los distintos incrementos hasta llegar al producto global y final. Las actividades concurrentes (especificación, desarrollo y validación) sintetizan el desarrollo pormenorizado de los incrementos, que se hará posteriormente.
Fig. 4 - Diagrama genérico del desarrollo evolutivo incremental.
El diagrama 4 muestra en forma muy esquemática, el funcionamiento de un ciclo iterativo incremental, el cual permite la entrega de versiones parciales a medida que se va construyendo el producto final.6 Es decir, a medida que cada incremento definido llega a su etapa de operación y mantenimiento. Cada versión emitida incorpora a los anteriores incrementos las funcionalidades y requisitos que fueron analizados como necesarios.
El incremental es un modelo de tipo evolutivo que está basado en varios ciclos Cascada Realimentados aplicados repetidamente, con una filosofía iterativa.10 En la figura 5 se muestra un refino del diagrama previo, bajo un esquema temporal, para obtener finalmente el esquema del modelo de ciclo de vida Iterativo Incremental, con sus actividades genéricas asociadas. Aquí se observa claramente cada ciclo cascada que es aplicado para la obtención de un incremento; estos últimos se van integrando para obtener el producto final completo. Cada incremento es un ciclo Cascada Realimentado, aunque, por simplicidad, en la figura 5 se muestra como secuencial puro.
Fig. 5 - Modelo iterativo incremental para el ciclo de vida del software,.
Se observa que existen actividades de desarrollo (para cada incremento) que son realizadas en paralelo o concurrentemente, así por ejemplo, en la figura, mientras se realiza el diseño detalle del primer incremento ya se está realizando en análisis del segundo. La figura 5 es sólo esquemática, un incremento no necesariamente se iniciará durante la fase de diseño del anterior, puede ser posterior (incluso antes), en cualquier tiempo de la etapa previa. Cada incremento concluye con la actividad de «operación y mantenimiento» (indicada como «Operación» en la figura), que es donde se produce la entrega del producto parcial al cliente. El momento de inicio de cada incremento es dependiente de varios factores: tipo de sistema; independencia o dependencia entre incrementos (dos de ellos totalmente independientes pueden ser fácilmente iniciados al mismo tiempo si se dispone de personal suficiente); capacidad y cantidad de profesionales involucrados en el desarrollo; etc.
Bajo este modelo se entrega software «por partes funcionales más pequeñas», pero reutilizables, llamadas incrementos. En general cada incremento se construye sobre aquel que ya fue entregado.6
Como se muestra en la figura 5, se aplican secuencias Cascada en forma escalonada, mientras progresa el tiempo calendario. Cada secuencia lineal o Cascada produce un incremento y a menudo el primer incremento es un sistema básico, con muchas funciones suplementarias (conocidas o no) sin entregar.
El cliente utiliza inicialmente ese sistema básico, intertanto, el resultado de su uso y evaluación puede aportar al plan para el desarrollo del/los siguientes incrementos (o versiones). Además también aportan a ese plan otros factores, como lo es la priorización (mayor o menor urgencia en la necesidad de cada incremento en particular) y la dependencia entre incrementos (o independencia).
Luego de cada integración se entrega un producto con mayor funcionalidad que el previo. El proceso se repite hasta alcanzar el software final completo.
Siendo iterativo, con el modelo incremental se entrega un producto parcial pero completamente operacional en cada incremento, y no una parte que sea usada para reajustar los requerimientos (como si ocurre en el modelo de construcción de prototipos).10
El enfoque incremental resulta muy útil cuando se dispone de baja dotación de personal para el desarrollo; también si no hay disponible fecha límite del proyecto por lo que se entregan versiones incompletas pero que proporcionan al usuario funcionalidad básica (y cada vez mayor). También es un modelo útil a los fines de versiones de evaluación.
Nota: Puede ser considerado y útil, en cualquier momento o incremento incorporar temporalmente el paradigma MCP como complemento, teniendo así una mixtura de modelos que mejoran el esquema y desarrollo general.
Ejemplo:
Un procesador de texto que sea desarrollado bajo el paradigma Incremental podría aportar, en principio, funciones básicas de edición de archivos y producción de documentos (algo como un editor simple). En un segundo incremento se le podría agregar edición más sofisticada, y de generación y mezcla de documentos. En un tercer incremento podría considerarse el agregado de funciones de corrección ortográfica, esquemas de paginado y plantillas; en un cuarto capacidades de dibujo propias y ecuaciones matemáticas. Así sucesivamente hasta llegar al procesador final requerido. Así, el producto va creciendo, acercándose a su meta final, pero desde la entrega del primer incremento ya es útil y funcional para el cliente, el cual observa una respuesta rápida en cuanto a entrega temprana; sin notar que la fecha límite del proyecto puede no estar acotada ni tan definida, lo que da margen de operación y alivia presiones al equipo de desarrollo.
Como se dijo, el Iterativo Incremental es un modelo del tipo evolutivo, es decir donde se permiten y esperan probables cambios en los requisitos en tiempo de desarrollo; se admite cierto margen para que el software pueda evolucionar9 . Aplicable cuando los requisitos son medianamente bien conocidos pero no son completamente estáticos y definidos, cuestión esa que si es indispensable para poder utilizar un modelo Cascada.
El modelo es aconsejable para el desarrollo de software en el cual se observe, en su etapa inicial de análisis, que posee áreas bastante bien definidas a cubrir, con suficiente independencia como para ser desarrolladas en etapas sucesivas. Tales áreas a cubrir suelen tener distintos grados de apremio por lo cual las mismas se deben priorizar en un análisis previo, es decir, definir cual será la primera, la segunda, y así sucesivamente; esto se conoce como «definición de los incrementos» con base en la priorización. Pueden no existir prioridades funcionales por parte del cliente, pero el desarrollador debe fijarlas de todos modos y con algún criterio, ya que basándose en ellas se desarrollarán y entregarán los distintos incrementos.
El hecho de que existan incrementos funcionales del software lleva inmediatamente a pensar en un esquema de desarrollo modular, por tanto este modelo facilita tal paradigma de diseño.
En resumen, un modelo incremental lleva a pensar en un desarrollo modular, con entregas parciales del producto software denominados «incrementos» del sistema, que son escogidos según prioridades predefinidas de algún modo. El modelo permite una implementación con refinamientos sucesivos (ampliación o mejora). Con cada incremento se agrega nueva funcionalidad o se cubren nuevos requisitos o bien se mejora la versión previamente implementada del producto software.
Este modelo brinda cierta flexibilidad para que durante el desarrollo se incluyan cambios en los requisitos por parte del usuario, un cambio de requisitos propuesto y aprobado puede analizarse e implementarse como un nuevo incremento o, eventualmente, podrá constituir una mejora/adecuación de uno ya planeado. Aunque si se produce un cambio de requisitos por parte del cliente que afecte incrementos previos ya terminados (detección/incorporación tardía) se debe evaluar la factibilidad y realizar un acuerdo con el cliente, ya que puede impactar fuertemente en los costos.
La selección de este modelo permite realizar entregas funcionales tempranas al cliente (lo cual es beneficioso tanto para él como para el grupo de desarrollo). Se priorizan las entregas de aquellos módulos o incrementos en que surja la necesidad operativa de hacerlo, por ejemplo para cargas previas de información, indispensable para los incrementos siguientes.10
El modelo iterativo incremental no obliga a especificar con precisión y detalle absolutamente todo lo que el sistema debe hacer, (y cómo), antes de ser construido (como el caso del cascada, con requisitos congelados). Sólo se hace en el incremento en desarrollo. Esto torna más manejable el proceso y reduce el impacto en los costos. Esto es así, porque en caso de alterar o rehacer los requisitos, solo afecta una parte del sistema. Aunque, lógicamente, esta situación se agrava si se presenta en estado avanzado, es decir en los últimos incrementos. En definitiva, el modelo facilita la incorporación de nuevos requisitos durante el desarrollo.
Con un paradigma incremental se reduce el tiempo de desarrollo inicial, ya que se implementa funcionalidad parcial. También provee un impacto ventajoso frente al cliente, que es la entrega temprana de partes operativas del software.
El modelo proporciona todas las ventajas del modelo en cascada realimentado, reduciendo sus desventajas sólo al ámbito de cada incremento.
El modelo incremental no es recomendable para casos de sistemas de tiempo real, de alto nivel de seguridad, de procesamiento distribuido, o de alto índice de riesgos.
[editar] Modelo espiral
El modelo espiral fue propuesto inicialmente por Barry Boehm. Es un modelo evolutivo que conjuga la naturaleza iterativa del modelo MCP con los aspectos controlados y sistemáticos del Modelo Cascada. Proporciona potencial para desarrollo rápido de versiones incrementales. En el modelo Espiral el software se construye en una serie de versiones incrementales. En las primeras iteraciones la versión incremental podría ser un modelo en papel o bien un prototipo. En las últimas iteraciones se producen versiones cada vez más completas del sistema diseñado.6 10
El modelo se divide en un número de Actividades de marco de trabajo, llamadas «regiones de tareas». En general existen entre tres y seis regiones de tareas (hay variantes del modelo). En la figura 6 se muestra el esquema de un Modelo Espiral con 6 regiones. En este caso se explica una variante del modelo original de Boehm, expuesto en su tratado de 1988; en 1998 expuso un tratado más reciente.
Fig. 6 - Modelo espiral para el ciclo de vida del software.
Las regiones definidas en el modelo de la figura son:
  • Región 1 - Tareas requeridas para establecer la comunicación entre el cliente y el desarrollador.
  • Región 2 - Tareas inherentes a la definición de los recursos, tiempo y otra información relacionada con el proyecto.
  • Región 3 - Tareas necesarias para evaluar los riesgos técnicos y de gestión del proyecto.
  • Región 4 - Tareas para construir una o más representaciones de la aplicación software.
  • Región 5 - Tareas para construir la aplicación, instalarla, probarla y proporcionar soporte al usuario o cliente (Ej. documentación y práctica).
  • Región 6 - Tareas para obtener la reacción del cliente, según la evaluación de lo creado e instalado en los ciclos anteriores.
Las actividades enunciadas para el marco de trabajo son generales y se aplican a cualquier proyecto, grande, mediano o pequeño, complejo o no. Las regiones que definen esas actividades comprenden un «conjunto de tareas» del trabajo: ese conjunto sí se debe adaptar a las características del proyecto en particular a emprender. Nótese que lo listado en los ítems de 1 a 6 son conjuntos de tareas, algunas de las ellas normalmente dependen del proyecto o desarrollo en si.
Proyectos pequeños requieren baja cantidad de tareas y también de formalidad. En proyectos mayores o críticos cada región de tareas contiene labores de más alto nivel de formalidad. En cualquier caso se aplican actividades de protección (por ejemplo, gestión de configuración del software, garantía de calidad, etc.).
Al inicio del ciclo, o proceso evolutivo, el equipo de ingeniería gira alrededor del espiral (metafóricamente hablando) comenzando por el centro (marcado con ๑ en la figura 6) y en el sentido indicado; el primer circuito de la espiral puede producir el desarrollo de una especificación del producto; los pasos siguientes podrían generar un prototipo y progresivamente versiones más sofisticadas del software.
Cada paso por la región de planificación provoca ajustes en el plan del proyecto; el coste y planificación se realimentan en función de la evaluación del cliente. El gestor de proyectos debe ajustar el número de iteraciones requeridas para completar el desarrollo.
El modelo espiral puede ir adaptándose y aplicarse a lo largo de todo el Ciclo de vida del software (en el modelo clásico, o cascada, el proceso termina a la entrega del software).
Una visión alternativa del modelo puede observarse examinando el «eje de punto de entrada de proyectos». Cada uno de los circulitos (๏) fijados a lo largo del eje representan puntos de arranque de los distintos proyectos (relacionados); a saber:
  • Un proyecto de «desarrollo de conceptos» comienza al inicio de la espiral, hace múltiples iteraciones hasta que se completa, es la zona marcada con verde.
  • Si lo anterior se va a desarrollar como producto real, se inicia otro proyecto: «Desarrollo de nuevo Producto». Que evolucionará con iteraciones hasta culminar; es la zona marcada en color azul.
  • Eventual y análogamente se generarán proyectos de «mejoras de productos» y de «mantenimiento de productos», con las iteraciones necesarias en cada área (zonas roja y gris, respectivamente).
Cuando la espiral se caracteriza de esta forma, está operativa hasta que el software se retira, eventualmente puede estar inactiva (el proceso), pero cuando se produce un cambio el proceso arranca nuevamente en el punto de entrada apropiado (por ejemplo, en «mejora del producto»).
El modelo espiral da un enfoque realista, que evoluciona igual que el software11 ; se adapta muy bien para desarrollos a gran escala.
El Espiral utiliza el MCP para reducir riesgos y permite aplicarlo en cualquier etapa de la evolución. Mantiene el enfoque clásico (cascada) pero incorpora un marco de trabajo iterativo que refleja mejor la realidad.
Este modelo requiere considerar riesgos técnicos en todas las etapas del proyecto; aplicado adecuadamente debe reducirlos antes de que sean un verdadero problema.
El Modelo evolutivo como el Espiral es particularmente apto para el desarrollo de Sistemas Operativos (complejos); también en sistemas de altos riesgos o críticos (Ej. navegadores y controladores aeronáuticos) y en todos aquellos en que sea necesaria una fuerte gestión del proyecto y sus riesgos, técnicos o de gestión.
Desventajas importantes:
  • Requiere mucha experiencia y habilidad para la evaluación de los riesgos, lo cual es requisito para el éxito del proyecto.
  • Es difícil convencer a los grandes clientes que se podrá controlar este enfoque evolutivo.
Este modelo no se ha usado tanto, como el Cascada (Incremental) o MCP, por lo que no se tiene bien medida su eficacia, es un paradigma relativamente nuevo y difícil de implementar y controlar.
[editar] Modelo espiral Win & Win
Una variante interesante del Modelo Espiral previamente visto (Fig. 6) es el «Modelo espiral Win-Win»7 (Barry Boehm). El Modelo Espiral previo (clásico) sugiere la comunicación con el cliente para fijar los requisitos, en que simplemente se pregunta al cliente qué necesita y él proporciona la información para continuar; pero esto es en un contexto ideal que rara vez ocurre. Normalmente cliente y desarrollador entran en una negociación, se negocia coste frente a funcionalidad, rendimiento, calidad, etc.
«Es así que la obtención de requisitos requiere una negociación, que tiene éxito cuando ambas partes ganan».
Las mejores negociaciones se fuerzan en obtener «Victoria & Victoria» (Win & Win), es decir que el cliente gane obteniendo el producto que lo satisfaga, y el desarrollador también gane consiguiendo presupuesto y fecha de entrega realista. Evidentemente, este modelo requiere fuertes habilidades de negociación.
El modelo Win-Win define un conjunto de actividades de negociación al principio de cada paso alrededor de la espiral; se definen las siguientes actividades:
  1. Identificación del sistema o subsistemas clave de los directivos(*) (saber qué quieren).
  2. Determinación de «condiciones de victoria» de los directivos (saber qué necesitan y los satisface)
  3. Negociación de las condiciones «victoria» de los directivos para obtener condiciones «Victoria & Victoria» (negociar para que ambos ganen).
(*) Directivo: Cliente escogido con interés directo en el producto, que puede ser premiado por la organización si tiene éxito o criticado si no.
El modelo Win & Win hace énfasis en la negociación inicial, también introduce 3 hitos en el proceso llamados «puntos de fijación», que ayudan a establecer la completitud de un ciclo de la espiral, y proporcionan hitos de decisión antes de continuar el proyecto de desarrollo del software.

Etapas en el desarrollo del software

Captura, análisis y especificación de requisitos

Al inicio de un desarrollo (no de un proyecto), esta es la primera fase que se realiza, y, según el modelo de proceso adoptado, puede casi terminar para pasar a la próxima etapa (caso de Modelo Cascada Realimentado) o puede hacerse parcialmente para luego retomarla (caso Modelo Iterativo Incremental u otros de carácter evolutivo).
En simple palabras y básicamente, durante esta fase, se adquieren, reúnen y especifican las características funcionales y no funcionales que deberá cumplir el futuro programa o sistema a desarrollar.
Las bondades de las características, tanto del sistema o programa a desarrollar, como de su entorno, parámetros no funcionales y arquitectura dependen enormemente de lo bien lograda que esté esta etapa. Esta es, probablemente, la de mayor importancia y una de las fases más difíciles de lograr certeramente, pues no es automatizable, no es muy técnica y depende en gran medida de la habilidad y experiencia del analista que la realice.
Involucra fuertemente al usuario o cliente del sistema, por tanto tiene matices muy subjetivos y es difícil de modelar con certeza o aplicar una técnica que sea «la más cercana a la adecuada» (de hecho no existe «la estrictamente adecuada»). Si bien se han ideado varias metodologías, incluso software de apoyo, para captura, elicitación y registro de requisitos, no existe una forma infalible o absolutamente confiable, y deben aplicarse conjuntamente buenos criterios y mucho sentido común por parte del o los analistas encargados de la tarea; es fundamental también lograr una fluida y adecuada comunicación y comprensión con el usuario final o cliente del sistema.
El artefacto más importante resultado de la culminación de esta etapa es lo que se conoce como especificación de requisitos software o simplemente documento ERS.
Como se dijo, la habilidad del analista para interactuar con el cliente es fundamental; lo común es que el cliente tenga un objetivo general o problema que resolver, no conoce en absoluto el área (informática), ni su jerga, ni siquiera sabe con precisión qué debería hacer el producto software (qué y cuantas funciones) ni, mucho menos, cómo debe operar. En otros casos menos frecuentes, el cliente «piensa» que sabe precisamente lo que el software tiene que hacer, y generalmente acierta muy parcialmente, pero su empecinamiento entorpece la tarea de elicitación. El analista debe tener la capacidad para lidiar con este tipo de problemas, que incluyen relaciones humanas; tiene que saber ponerse al nivel del usuario para permitir una adecuada comunicación y comprensión.
Escasas son las situaciones en que el cliente sabe con certeza e incluso con completitud lo que requiere de su futuro sistema, este es el caso más sencillo para el analista.
Las tareas relativas a captura, elicitación, modelado y registro de requerimientos, además de ser sumamente importante, puede llegar a ser dificultosa de lograr acertadamente y llevar bastante tiempo relativo al proceso total del desarrollo; al proceso y metodologías para llevar a cabo este conjunto de actividades normalmente se las asume parte propia de la Ingeniería de Software, pero dada la antedicha complejidad, actualmente se habla de una Ingeniería de requisitos12 , aunque ella aún no existe formalmente.
Hay grupos de estudio e investigación, en todo el mundo, que están exclusivamente abocados a idear modelos, técnicas y procesos para intentar lograr la correcta captura, análisis y registro de requerimientos. Estos grupos son los que normalmente hablan de la Ingeniería de requisitos; es decir se plantea ésta como un área o disciplina pero no como una carrera universitaria en si misma.
Algunos requisitos no necesitan la presencia del cliente, para ser capturados o analizados; en ciertos casos los puede proponer el mismo analista o, incluso, adoptar unilateralmente decisiones que considera adecuadas (tanto en requerimientos funcionales como no funcionales). Por citar ejemplos probables: Algunos requisitos sobre la arquitectura del sistema, requisitos no funcionales tales como los relativos al rendimiento, nivel de soporte a errores operativos, plataformas de desarrollo, relaciones internas o ligas entre la información (entre registros o tablas de datos) a almacenar en caso de bases o bancos de datos, etc. Algunos funcionales tales como opciones secundarias o de soporte necesarias para una mejor o más sencilla operatividad; etc.
La obtención de especificaciones a partir del cliente (u otros actores intervinientes) es un proceso humano muy interactivo e iterativo; normalmente a medida que se captura la información, se la analiza y realimenta con el cliente, refinándola, puliéndola y corrigiendo si es necesario; cualquiera sea el método de ERS utilizado. EL analista siempre debe llegar a conocer la temática y el problema que resolver, dominarlo, hasta cierto punto, hasta el ámbito que el futuro sistema a desarrollar lo abarque. Por ello el analista debe tener alta capacidad para comprender problemas de muy diversas áreas o disciplinas de trabajo (que no son específicamente suyas); así por ejemplo, si el sistema a desarrollar será para gestionar información de una aseguradora y sus sucursales remotas, el analista se debe compenetrar en cómo ella trabaja y maneja su información, desde niveles muy bajos e incluso llegando hasta los gerenciales. Dada a gran diversidad de campos a cubrir, los analistas suelen ser asistidos por especialistas, es decir gente que conoce profundamente el área para la cual se desarrollará el software; evidentemente una única persona (el analista) no puede abarcar tan vasta cantidad de áreas del conocimiento. En empresas grandes de desarrollo de productos software, es común tener analistas especializados en ciertas áreas de trabajo.
Contrariamente, no es problema del cliente, es decir él no tiene por qué saber nada de software, ni de diseños, ni otras cosas relacionadas; sólo se debe limitar a aportar objetivos, datos e información (de mano propia o de sus registros, equipos, empleados, etc) al analista, y guiado por él, para que, en primera instancia, defina el «Universo de Discurso», y con posterior trabajo logre confeccionar el adecuado documento ERS.
Es bien conocida la presión que sufren los desarrolladores de sistemas informáticos para comprender y rescatar las necesidades de los clientes/usuarios. Cuanto más complejo es el contexto del problema más difícil es lograrlo, a veces se fuerza a los desarrolladores a tener que convertirse en casi expertos de los dominios que analizan.
Cuando esto no sucede es muy probable que se genere un conjunto de requisitos13 erróneos o incompletos y por lo tanto un producto de software con alto grado de desaprobación por parte de los clientes/usuarios y un altísimo costo de reingeniería y mantenimiento. Todo aquello que no se detecte, o resulte mal entendido en la etapa inicial provocará un fuerte impacto negativo en los requisitos, propagando esta corriente degradante a lo largo de todo el proceso de desarrollo e incrementando su perjuicio cuanto más tardía sea su detección (Bell y Thayer 1976)(Davis 1993).
Procesos, modelado y formas de elicitación de requisitos
Siendo que la captura, elicitación y especificación de requisitos, es una parte crucial en el proceso de desarrollo de software, ya que de esta etapa depende el logro de los objetivos finales previstos, se han ideado modelos y diversas metodologías de trabajo para estos fines. También existen herramientas software que apoyan las tareas relativas realizadas por el ingeniero en requisitos.
El estándar IEEE 830-1998 brinda una normalización de las «Prácticas Recomendadas para la Especificación de Requisitos Software».14
A medida que se obtienen los requisitos, normalmente se los va analizando, el resultado de este análisis, con o sin el cliente, se plasma en un documento, conocido como ERS o Especificación de Requisitos Software, cuya estructura puede venir definida por varios estándares, tales como CMMI.
Un primer paso para realizar el relevamiento de información es el conocimiento y definición acertada lo que se conoce como «Universo de Discurso» del problema, que se define y entiende por:
Universo de Discurso (UdeD): es el contexto general en el cual el software deberá ser desarrollado y deberá operar. El UdeD incluye todas las fuentes de información y todas las personas relacionadas con el software. Esas personas son conocidas también como actores de ese universo. El UdeD es la realidad circunstanciada por el conjunto de objetivos definidos por quienes demandaron el software.
A partir de la extracción y análisis de información en su ámbito se obtienen todas las especificaciones necesarias y tipos de requisitos para el futuro producto software.
El objetivo de la Ingeniería de requisitos (IR) es sistematizar el proceso de definición de requisitos permitiendo elicitar, modelar y analizar el problema, generando un compromiso entre los ingenieros de requisitos y los clientes/usuarios, ya que ambos participan en la generación y definición de los requisitos del sistema. La IR aporta un conjunto de métodos, técnicas y herramientas que asisten a los ingenieros de requisitos (analistas) para obtener requerimientos lo más seguros, veraces, completos y oportunos posibles, permitiendo básicamente:
  • Comprender el problema
  • Facilitar la obtención de las necesidades del cliente/usuario
  • Validar con el cliente/usuario
  • Garantizar las especificaciones de requisitos
Si bien existen diversas formas, modelos y metodologías para elicitar, definir y documentar requerimientos, no se puede decir que alguna de ellas sea mejor o peor que la otra, suelen tener muchísimo en común, y todas cumplen el mismo objetivo. Sin embargo, lo que si se puede decir sin dudas es que es indispensable utilizar alguna de ellas para documentar las especificaciones del futuro producto software. Así por ejemplo, hay un grupo de investigación argentino que desde hace varios años ha propuesto y estudia el uso del LEL (Léxico Extendido del Lenguaje) y Escenarios como metodología, aquí15 se presenta una de las tantas referencias y bibliografía sobre ello. Otra forma, más ortodoxa, de capturar y documentar requisitos se puede obtener en detalle, por ejemplo, en el trabajo de la Universidad de Sevilla sobre «Metodología para el Análisis de Requisitos de Sistemas Software».16

En la Fig. 7 se muestra un esquema, más o menos riguroso, aunque no detallado, de los pasos y tareas a seguir para realizar la captura, análisis y especificación de requerimientos software. También allí se observa qué artefacto o documento se obtiene en cada etapa del proceso. En el diagrama no se explicita metodología o modelo a utilizar, sencillamente se pautan las tareas que deben cumplirse, de alguna manera.
Fig. 7 - Diagrama de tareas para captura y análisis de requisitos.
Una posible lista, general y ordenada, de tareas recomendadas para obtener la definición de lo que se debe realizar, los productos a obtener y las técnicas a emplear durante la actividad de elicitación de requisitos, en fase de Especificación de Requisitos Software es:
  1. Obtener información sobre el dominio del problema y el sistema actual (UdeD).
  2. Preparar y realizar las reuniones para elicitación/negociación.
  3. Identificar/revisar los objetivos del usuario.
  4. Identificar/revisar los objetivos del sistema.
  5. Identificar/revisar los requisitos de información.
  6. Identificar/revisar los requisitos funcionales.
  7. Identificar/revisar los requisitos no funcionales.
  8. Priorizar objetivos y requisitos.
Algunos principios básicos a tener en cuenta:
  • Presentar y entender cabalmente el dominio de la información del problema.
  • Definir correctamente las funciones que debe realizar el Software.
  • Representar el comportamiento del software a consecuencias de acontecimientos externos, particulares, incluso inesperados.
  • Reconocer requisitos incompletos, ambiguos o contradictorios.
  • Dividir claramente los modelos que representan la información, las funciones y comportamiento y características no funcionales.
Clasificación e identificación de requerimientos
Se pueden identificar dos formas de requisitos:
  • Requisitos de usuario: Los requisitos de usuario son frases en lenguaje natural junto a diagramas con los servicios que el sistema debe proporcionar, así como las restricciones bajo las que debe operar.
  • Requisitos de sistema: Los requisitos de sistema determinan los servicios del sistema y pero con las restricciones en detalle. Sirven como contrato.
Es decir, ambos son lo mismo, pero con distinto nivel de detalle.
Ejemplo de requisito de usuario: El sistema debe hacer préstamos Ejemplo de requisito de sistema: Función préstamo: entrada código socio, código ejemplar; salida: fecha devolución; etc.
Se clasifican en tres los tipos de requisitos de sistema:
  • Requisitos funcionales
Los requisitos funcionales describen:
  • Los servicios que proporciona el sistema (funciones).
  • La respuesta del sistema ante determinadas entradas.
  • El comportamiento del sistema en situaciones particulares.
  • Requisitos no funcionales
Los requisitos no funcionales son restricciones de los servicios o funciones que ofrece el sistema (ej. cotas de tiempo, proceso de desarrollo, rendimiento, etc.)
Ejemplo 1. La biblioteca Central debe ser capaz de atender simultáneamente a todas las bibliotecas de la Universidad
Ejemplo 2. El tiempo de respuesta a una consulta remota no debe ser superior a 1/2 s
A su vez, hay tres tipos de requisitos no funcionales:
  • Requisitos del producto. Especifican el comportamiento del producto (Ej. prestaciones, memoria, tasa de fallos, etc.)
  • Requisitos organizativos. Se derivan de las políticas y procedimientos de las organizaciones de los clientes y desarrolladores (Ej. estándares de proceso, lenguajes de programación, etc.)
  • Requisitos externos. Se derivan de factores externos al sistema y al proceso de desarrollo (Ej. requisitos legislativos, éticos, etc.)
  • Requisitos del dominio.
Los requisitos del dominio se derivan del dominio de la aplicación y reflejan características de dicho dominio.
Pueden ser funcionales o no funcionales.
Ej. El sistema de biblioteca de la Universidad debe ser capaz de exportar datos mediante el Lenguaje de Intercomunicación de Bibliotecas de España (LIBE). Ej. El sistema de biblioteca no podrá acceder a bibliotecas con material censurado.

Diseño del sistema

En ingeniería de software, el diseño es una fase de ciclo de vida del software. Se basa en la especificación de requisitos producido por el análisis de los requerimientos (fase de análisis), el diseño define cómo estos requisitos se cumplirán, la estructura que debe darse al sistema de software para que se haga realidad.
El diseño sigue siendo una fase separada del la programación o codificación, esta ultima corresponde a la traducción en un determinado lenguaje de programación de las premisas adoptadas en el diseño.
Las distinciones entre las actividades mencionadas hasta ahora no siempre son claras cómo se quisiera en las teorías clásicas de ingeniería de software. El diseño, en particular, puede describir el funcionamiento interno de un sistema en diferentes niveles de detalle, cada una de ellos se coloca en una posición intermedia entre el análisis y codificación.
Normalmente se entiende por "diseño de la arquitectura" al diseño de "muy alto nivel", que sólo define la estructura del sistema en términos de la módulos de software de que se compone y las relaciones macroscópicas entre ellos. A este nivel de diseño pertenecen fórmulas como cliente-servidor o “tres niveles”, o, más generalmente, las decisiones sobre el uso de la arquitectura de hardware especial que se utilice, el sistema operativo, DBMS, Protocolos de red, etc.
Un nivel intermedio de detalle puede definir la descomposición del sistema en módulos, pero esta vez con una referencia más o menos explícita al modo de descomposición que ofrece el particular lenguaje de programación con el que el desarrollo se va a implementar, por ejemplo, en un diseño realizado con la tecnología de objetos, el proyecto podría describir al sistema en términos de clases y sus interrelaciones.
El diseño detallado, por último, es una descripción del sistema muy cercana a la codificación (por ejemplo, describir no sólo las clases en abstracto, sino también sus atributos y los métodos con sus tipos).
Debido a la naturaleza "intangible" del software, y dependiendo de las herramientas que se utilizan en el proceso, la frontera entre el diseño y la codificación también puede ser virtualmente imposible de identificar. Por ejemplo, algunas herramientas CASE son capaces de generar código a partir de diagramas UML, los que describen gráficamente la estructura de un sistema software.

Codificación del software

Durante esta etapa se realizan las tareas que comúnmente se conocen como programación; que consiste, esencialmente, en llevar a código fuente, en el lenguaje de programación elegido, todo lo diseñado en la fase anterior. Esta tarea la realiza el programador, siguiendo por completo los lineamientos impuestos en el diseño y en consideración siempre a los requisitos funcionales y no funcionales (ERS) especificados en la primera etapa.
Es común pensar que la etapa de programación o codificación (algunos la llaman implementación) es la que insume la mayor parte del trabajo de desarrollo del software; sin embargo, esto puede ser relativo (y generalmente aplicable a sistemas de pequeño porte) ya que las etapas previas son cruciales, críticas y pueden llevar bastante más tiempo. Se suele hacer estimaciones de un 30% del tiempo total insumido en la programación, pero esta cifra no es consistente ya que depende en gran medida de las características del sistema, su criticidad y el lenguaje de programación elegido.7 En tanto menor es el nivel del lenguaje mayor será el tiempo de programación requerido, así por ejemplo se tardaría más tiempo en codificar un algoritmo en lenguaje ensamblador que el mismo programado en lenguaje C.
Mientras se programa la aplicación, sistema, o software en general, se realizan también tareas de depuración, esto es la labor de ir liberando al código de los errores factibles de ser hallados en esta fase (de semántica, sintáctica y lógica). Hay una suerte de solapamiento con la fase siguiente, ya que para depurar la lógica es necesario realizar pruebas unitarias, normalmente con datos de prueba; claro es que no todos los errores serán encontrados sólo en la etapa de programación, habrán otros que se encontrarán durante las etapas subsiguientes. La aparición de algún error funcional (mala respuesta a los requerimientos) eventualmente puede llevar a retornar a la fase de diseño antes de continuar la codificación.
Durante la fase de programación, el código puede adoptar varios estados, dependiendo de la forma de trabajo y del lenguaje elegido, a saber:
  • Código fuente: es el escrito directamente por los programadores en editores de texto, lo cual genera el programa. Contiene el conjunto de instrucciones codificadas en algún lenguaje de alto nivel. Puede estar distribuido en paquetes, procedimientos, bibliotecas fuente, etc.
  • Código objeto: es el código binario o intermedio resultante de procesar con un compilador el código fuente. Consiste en una traducción completa y de una sola vez de éste último. El código objeto no es inteligible por el ser humano (normalmente es formato binario) pero tampoco es directamente ejecutable por la computadora. Se trata de una representación intermedia entre el código fuente y el código ejecutable, a los fines de un enlace final con las rutinas de biblioteca y entre procedimientos o bien para su uso con un pequeño intérprete intermedio [a modo de distintos ejemplos véase EUPHORIA, (intérprete intermedio), FORTRAN (compilador puro) MSIL (Microsoft Intermediate Language) (intérprete) y BASIC (intérprete puro, intérprete intermedio, compilador intermedio o compilador puro, depende de la versión utilizada)].
    • El código objeto no existe si el programador trabaja con un lenguaje a modo de intérprete puro, en este caso el mismo intérprete se encarga de traducir y ejecutar línea por línea el código fuente (de acuerdo al flujo del programa), en tiempo de ejecución. En este caso tampoco existe el o los archivos de código ejecutable. Una desventaja de esta modalidad es que la ejecución del programa o sistema es un poco más lenta que si se hiciera con un intérprete intermedio, y bastante más lenta que si existe el o los archivos de código ejecutable. Es decir no favorece el rendimiento en velocidad de ejecución. Pero una gran ventaja de la modalidad intérprete puro, es que el esta forma de trabajo facilita enormemente la tarea de depuración del código fuente (frente a la alternativa de hacerlo con un compilador puro). Frecuentemente se suele usar una forma mixta de trabajo (si el lenguaje de programación elegido lo permite), es decir inicialmente trabajar a modo de intérprete puro, y una vez depurado el código fuente (liberado de errores) se utiliza un compilador del mismo lenguaje para obtener el código ejecutable completo, con lo cual se agiliza la depuración y la velocidad de ejecución se optimiza.
  • Código ejecutable: Es el código binario resultado de enlazar uno o más fragmentos de código objeto con las rutinas y bibliotecas necesarias. Constituye uno o más archivos binarios con un formato tal que el sistema operativo es capaz de cargarlo en la memoria RAM (eventualmente también parte en una memoria virtual), y proceder a su ejecución directa. Por lo anterior se dice que el código ejecutable es directamente «inteligible por la computadora». El código ejecutable, también conocido como código máquina, no existe si se programa con modalidad de «intérprete puro».

[editar] Pruebas (unitarias y de integración)

Entre las diversas pruebas que se le efectúan al software se pueden distinguir principalmente:
  • Prueba unitarias: Consisten en probar o testear piezas de software pequeñas; a nivel de secciones, procedimientos, funciones y módulos; aquellas que tengan funcionalidades específicas. Dichas pruebas se utilizan para asegurar el correcto funcionamiento de secciones de código, mucho más reducidas que el conjunto, y que tienen funciones concretas con cierto grado de independencia.
  • Pruebas de integración: Se realizan una vez que las pruebas unitarias fueron concluidas exitosamente; con éstas se intenta asegurar que el sistema completo, incluso los subsistemas que componen las piezas individuales grandes del software funcionen correctamente al operar e inteoperar en conjunto.
Las pruebas normalmente se efectúan con los llamados datos de prueba, que es un conjunto seleccionado de datos típicos a los que puede verse sometido el sistema, los módulos o los bloques de código. También se escogen: Datos que llevan a condiciones límites al software a fin de probar su tolerancia y robustez; datos de utilidad para mediciones de rendimiento; datos que provocan condiciones eventuales o particulares poco comunes y a las que el software normalmente no estará sometido pero pueden ocurrir; etc. Los «datos de prueba» no necesariamente son ficticios o «creados», pero normalmente sí lo son los de poca probabilidad de ocurrencia.
Generalmente, existe un fase probatoria final y completa del software, llamada Beta Test, durante la cual el sistema instalado en condiciones normales de operación y trabajo es probado exhaustivamente a fin de encontrar errores, inestabilidades, respuestas erróneas, etc. que hayan pasado los previos controles. Estas son normalmente realizadas por personal idóneo contratado o afectado específicamente a ello. Los posibles errores encontrados se transmiten a los desarrolladores para su depuración. En el caso de software de desarrollo «a pedido», el usuario final (cliente) es el que realiza el Beta Test, teniendo para ello un período de prueba pactado con el desarrollador.

[editar] Instalación y paso a producción

La instalación del software es el proceso por el cual los programas desarrollados son transferidos apropiadamente al computador destino, inicializados, y, eventualmente, configurados; todo ello con el propósito de ser ya utilizados por el usuario final. Constituye la etapa final en el desarrollo propiamente dicho del software. Luego de ésta el producto entrará en la fase de funcionamiento y producción, para el que fuera diseñado.
La instalación, dependiendo del sistema desarrollado, puede consistir en una simple copia al disco rígido destino (casos raros actualmente); o bien, más comúnmente, con una de complejidad intermedia en la que los distintos archivos componentes del software (ejecutables, bibliotecas, datos propios, etc.) son descomprimidos y copiados a lugares específicos preestablecidos del disco; incluso se crean vínculos con otros productos, además del propio sistema operativo. Este último caso, comúnmente es un proceso bastante automático que es creado y guiado con heramientas software específicas (empaquetado y distribución, instaladores).
En productos de mayor complejidad, la segunda alternativa es la utilizada, pero es realizada o guiada por especialistas; puede incluso requerirse la instalación en varios y distintos computadores (instalación distribuida).
También, en software de mediana y alta complejidad normalmente es requerido un proceso de configuración y chequeo, por el cual se asignan adecuados parámetros de funcionamiento y se testea la operatividad funcional del producto.
En productos de venta masiva las instalaciones completas, si son relativamente simples, suelen ser realizadas por los propios usuarios finales (tales como sistemas operativos, paquetes de oficina, utilitarios, etc.) con herramientas propias de instalación guiada; incluso la configuración suele ser automática. En productos de diseño específico o «a medida» la instalación queda restringida, normalmente, a personas especialistas involucradas en el desarrollo del software en cuestión.
Una vez realizada exitosamente la instalación del software, el mismo pasa a la fase de producción (operatividad), durante la cual cumple las funciones para las que fue desarrollado, es decir, es finalmente utilizado por el (o los) usuario final, produciendo los resultados esperados.

Mantenimiento

El mantenimiento de software es el proceso de control, mejora y optimización del software ya desarrollado e instalado, que también incluye depuración de errores y defectos que puedan haberse filtrado de la fase de pruebas de control y beta test. Esta fase es la última (antes de iterar, según el modelo empleado) que se aplica al ciclo de vida del desarrollo de software. La fase de mantenimiento es la que viene después de que el software está operativo y en producción.
De un buen diseño y documentación del desarrollo dependerá cómo será la fase de mantenimiento, tanto en costo temporal como monetario. Modificaciones realizadas a un software que fue elaborado con una documentación indebida o pobre y mal diseño puede llegar a ser tanto o más costosa que desarrollar el software desde el inicio. Por ello, es de fundamental importancia respetar debidamente todas las tareas de las fases del desarrollo y mantener adecuada y completa la documentación.
El período de la fase de mantenimiento es normalmente el mayor en todo el ciclo de vida.7 Esta fase involucra también actualizaciones y evoluciones del software; no necesariamente implica que el sistema tuvo errores. Uno o más cambios en el software, por ejemplo de adaptación o evolutivos, puede llevar incluso a rever y adaptar desde parte de las primeras fases del desarrollo inicial, alterando todas las demás; dependiendo de cuán profundos sean los cambios. El modelo cascada común es particularmente costoso en mantenimiento, ya que su rigidez implica que cualquier cambio provoca regreso a fase inicial y fuertes alteraciones en las demás fases del ciclo de vida.
Durante el período de mantenimiento, es común que surjan nuevas revisiones y versiones del producto; que lo liberan más depurado, con mayor y mejor funcionalidad, mejor rendimiento, etc. Varias son las facetas que pueden ser alteradas para provocar cambios deseables, evolutivos, adaptaciones o ampliaciones y mejoras.
Básicamente se tienen los siguientes tipos de cambios:
  • Perfectivos: Aquellos que llevan a una mejora de la calidad interna del software en cualquier aspecto: Reestructuración del código, definición más clara del sistema y su documentación; optimización del rendimiento y eficiencia.
  • Evolutivos: Agregados, modificaciones, incluso eliminaciones, necesarias en el software para cubrir su expansión o cambio, según las necesidades del usuario.
  • Adaptivos: Modificaciones que afectan a los entornos en los que el sistema opera, tales como: Cambios de configuración del hardware (por actualización o mejora de componentes electrónicos), cambios en el software de base, en gestores de base de datos, en comunicaciones, etc.
  • Correctivos: Alteraciones necesarias para corregir errores de cualquier tipo en el producto software desarrollado.

Carácter evolutivo del software

El software es el producto derivado del proceso de desarrollo, según la ingeniería de software. Este producto es intrínsecamente evolutivo durante su ciclo de vida. El software evoluciona, en general, generando versiones cada vez más completas, complejas, mejoradas, optimizadas en algún aspecto, adecuadas a nuevas plataformas (sean de hardware o sistemas operativos), etc.
Cuando un sistema deja de evolucionar, eventualmente cumplirá con su ciclo de vida, entrará en obsolescencia e inevitablemente, tarde o temprano, será reemplazado por un producto nuevo.
El software evoluciona sencillamente por que se debe adaptar a los cambios del entorno, sean funcionales (exigencias de usuarios), operativos, de plataforma o arquitectura hardware.
La dinámica de evolución del software es el estudio de los cambios del sistema. La mayor contribución en esta área fue realizada por Meir M. Lehman y Belady, comenzando en los años 70 y 80. Su trabajo continuó en la década de 1990, con Lehman y otros investigadores18 de relevancia en la realimentación en los procesos de evolución (Lehman, 1996; Lehman et al., 1998; lehman et al., 2001). A partir de esos estudios propusieron un conjunto de leyes (conocidas como leyes de Lehman)9 respecto de los cambios producidos en los sistemas. Estas leyes (en realidad son hipótesis) son invariantes y ampliamente aplicables.
Lehman y Belady analizaron el crecimiento y la evolución de varios sistemas software de gran porte; derivando finalmente, según sus medidas, las siguientes ocho leyes:
  1. Cambio continuo: Un programa que se usa en un entorno real necesariamente debe cambiar o se volverá progresivamente menos útil en ese entorno.
  2. Complejidad creciente: A medida que un programa en evolución cambia, su estructura tiende a ser cada vez más compleja. Se deben dedicar recuersos extras para preservar y simplificar la estrucutura.
  3. Evolución prolongada del programa: La evolución de los programas es un proceso autorregulativo. Los atributos de los sistemas, tales como tamaño, tiempo entre entregas y la cantidad de errores documentados son aproximadamente invariantes para cada entrega del sistema.
  4. Estabilidad organizacional: Durante el tiempo de vida de un programa, su velocidad de desarrollo es aproximadamente constante e independiente de los recursos dedicados al desarrollo del sistema.
  5. Conservación de la familiaridad: Durante el tiempo de vida de un sistema, el cambio incremental en cada entrega es aproximadamente constante.
  6. Crecimiento continuado: La funcionalidad ofrecida por los sistemas tiene que crecer continuamente para mantener la satisfacción de los usuarios.
  7. Decremento de la calidad: La calidad de los sistemas software comenzará a disminuir a menos que dichos sistemas se adapten a los cambios de su entorno de funcionamiento.
  8. Realimentación del sistema: Los procesos de evolución incorporan sistemas de realimentación multiagente y multibucle y estos deben ser tratados como sistemas de realimentación para lograr una mejora significativa del producto.